High-affinity olfactory receptor for the death-associated odor cadaverine.

نویسندگان

  • Ashiq Hussain
  • Luis R Saraiva
  • David M Ferrero
  • Gaurav Ahuja
  • Venkatesh S Krishna
  • Stephen D Liberles
  • Sigrun I Korsching
چکیده

Carrion smell is strongly repugnant to humans and triggers distinct innate behaviors in many other species. This smell is mainly carried by two small aliphatic diamines, putrescine and cadaverine, which are generated by bacterial decarboxylation of the basic amino acids ornithine and lysine. Depending on the species, these diamines may also serve as feeding attractants, oviposition attractants, or social cues. Behavioral responses to diamines have not been investigated in zebrafish, a powerful model system for studying vertebrate olfaction. Furthermore, olfactory receptors that detect cadaverine and putrescine have not been identified in any species so far. Here, we show robust olfactory-mediated avoidance behavior of zebrafish to cadaverine and related diamines, and concomitant activation of sparse olfactory sensory neurons by these diamines. The large majority of neurons activated by low concentrations of cadaverine expresses a particular olfactory receptor, trace amine-associated receptor 13c (TAAR13c). Structure-activity analysis indicates TAAR13c to be a general diamine sensor, with pronounced selectivity for odd chains of medium length. This receptor can also be activated by decaying fish extracts, a physiologically relevant source of diamines. The identification of a sensitive zebrafish olfactory receptor for these diamines provides a molecular basis for studying neural circuits connecting sensation, perception, and innate behavior.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A single identified glomerulus in the zebrafish olfactory bulb carries the high-affinity response to death-associated odor cadaverine

The death-associated odor cadaverine, generated by bacteria-mediated decarboxylation of lysine, has been described as the principal activator of a particular olfactory receptor in zebrafish, TAAR13c. Low concentrations of cadaverine activated mainly TAAR13c-expressing olfactory sensory neurons, suggesting TAAR13c as an important element of the neuronal processing pathway linking cadaverine stim...

متن کامل

Elimination of a ligand gating site generates a supersensitive olfactory receptor

Olfaction poses one of the most complex ligand-receptor matching problems in biology due to the unparalleled multitude of odor molecules facing a large number of cognate olfactory receptors. We have recently deorphanized an olfactory receptor, TAAR13c, as a specific receptor for the death-associated odor cadaverine. Here we have modeled the cadaverine/TAAR13c interaction, exchanged predicted bi...

متن کامل

Selective imaging of presynaptic activity in the mouse olfactory bulb shows concentration and structure dependence of odor responses in identified glomeruli.

More chemicals can be smelled than there are olfactory receptors for them, necessitating a combinatorial representation by somewhat broadly tuned receptors. To understand the perception of odor quality and concentration, it is essential to establish the nature of the receptor repertoires that are activated by particular odorants at particular concentrations. We have taken advantage of the one-t...

متن کامل

Computational Approaches for Decoding Select Odorant-Olfactory Receptor Interactions Using Mini-Virtual Screening

Olfactory receptors (ORs) belong to the class A G-Protein Coupled Receptor superfamily of proteins. Unlike G-Protein Coupled Receptors, ORs exhibit a combinatorial response to odors/ligands. ORs display an affinity towards a range of odor molecules rather than binding to a specific set of ligands and conversely a single odorant molecule may bind to a number of olfactory receptors with varying a...

متن کامل

Relating Sensor Responses of Odorants to Their Organoleptic Properties by Means of a Biologically-Inspired Model of Receptor Neuron Convergence onto Olfactory Bulb

We present a neuromorphic approach to study the relationship between the response of a sensor/instrument to odorant molecules and the perceptual characteristics of the odors. Clearly, such correlations are only possible if the sensing instrument captures information about molecular properties (e.g., functional group, carbon chain-length) to which biological receptors have affinity. Given that i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 110 48  شماره 

صفحات  -

تاریخ انتشار 2013